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The following is taken from a paper. “...”
Stochastic dynamic modeling plays an essential role

in numerous physics and engineering problems. It can
be applied wherever random properties of a dynamical
system have to be considered. Most of the emphasis is
placed on the stability analysis of the stochastic dynami-
cal systems (see [1, 14, 23]). Moreover, in many applica-
tions, the physical or chemical processes are governed by
more than one dynamics: the dynamics change among
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a family of choices with respect to time t or state x.
Such processes are often described by switched systems
and have been studied extensively in recent years (see
[5, 6, 17, 18, 27, 28, 43, 29, 30, 34, 37, 38, 41]). Time-
delay and uncertainties are two main causes for instabil-
ity of dynamical systems (see [12, 21]). Numerous stud-
ies have been carried out on stability analysis and stabi-
lization of time-delay systems and uncertain systems (see
[3, 4, 7, 8, 9, 11, 13, 15, 20, 24, 26, 25, 31, 33, 35, 39,
40, 42, 44, 45, 46]), some of which have been done in the
scope of stochastic systems or switched systems. To the
best knowledge of the authors, few work has been done for
switched stochastic systems with both uncertainties and
time-delay. In addition, the average dwell time scheme as-
sociated with the multiple Lyapunov functions has been
proved to be an important method for switched systems
in [16] (see also [28]). However, these pioneering works
have only been conducted for switched systems without
delays and stochastic perturbations, although switched
systems with delays or stochastic perturbations are in
fact very common in practice. Moreover, as long as the
stability of a time-delay system is considered, there ex-
ist both delay-independent criteria and delay-dependent
criteria, of which the latter one is proved to be less con-
servative and therefore more important in practical appli-
cations, although sometimes more challenging to obtain
(see [35]). The objective of this paper is to achieve delay-
dependent stability analysis of delay switched stochastic
systems with uncertainties. The delay-dependent stabil-
ity criteria are given in terms of linear matrix inequalities
(LMIs) and average dwell time.

2 Problem statement and prelim-
inaries

Consider the following stochastic uncertain switched sys-
tem

dx(t) = [(Ai + ∆Ai)x(t) + (Ãi + ∆Ãi)x(t− h)]dt

+ [(Bi + ∆Bi)x(t) + (B̃i + ∆B̃i)x(t− h)]dw(t),
for t ≥ 0, α(t) = i, (1)

x(t) = φ(t), t ∈ [−h, 0],
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where x ∈ Rn is the state and h is the constant time-
delay. w(t) is a scalar Brownian motion. φ is the initial
data. Ai, Ãi ∈ Rn×n, Bi and B̃i ∈ Rn×m are constant
real matrices. Let the switching signal α : R+ → IK

4
=

{1, 2, ..., K} be a piecewise constant and continuous from
the right deterministic function, with finitely many dis-
continuities on every bounded subinterval of R+. With-
out loss of generality, we can suppose that α(t) is right
continuous at its points of discontinuity. ∆Ai, ∆Ãi, ∆Bi

and ∆B̃i are time-dependent uncertainties of the form

∆AT
i ∆Ai ≤ Âi, ∆Ãi

T
∆Ãi ≤ ̂̃Ai,

∆BT
i ∆Bi ≤ B̂i, ∆B̃i

T
∆B̃i ≤ ̂̃Bi,

where Âi,
̂̃Ai, B̂i, and ̂̃Bi are known constant real matri-

ces of appropriate dimensions, which describe the uncer-
tainty bounds. We shall call this kind of uncertainties ad-
missible uncertainties. Note that the assumption on the
switching signal α guarantees that system (1) switches
only finite times on any bounded time interval. It is well-
known that, given any initial data φ ∈ L2,h

F0
, any single

system in (1) has a unique solution (see [32]). Based on
the assumption on the switching signal, it follows step by
step that the switched system (1) has a unique solution
as well, denoted by x(t;φ).

Two types of stability are considered in this paper, one
is almost sure exponential stability and the other is expo-
nential stability in pth moment (see [32] for definitions).
The main problem now can be formulated as follows:

Problem 2.1. For all admissible uncertainties, under
what conditions will the uncertain switched system (1)
be almost surely exponentially stable? Under what con-
ditions will it be exponentially stable in mean square?

3 Main results

In this section, the stability analysis of system (1) is stud-
ied.

Theorem 3.1. Given h > 0, the uncertain switched
stochastic system (1) is robustly exponentially stable in
mean square if the following two conditions hold:

1. For each i ∈ IK , there exist positive numbers ε1,i,
ε2,i, . . . , ε9,i and ρi, positive definite matrices Qi,
Hi, Pi, and arbitrary matrices Gi such that the fol-
lowing matrix inequalities are satisfied:

Ψi =




Ψ11 Ψ12 Ψ13

? Ψ22 Ψ23

? ? Ψ33


 < 0, (2)

Qi ≤ ρiI, (3)

2. Let Ta be the average dwell time of system (1),

Ta >
lnβ

ε
, (4)

where

and ε is the unique root of the equation

λ− εc2 − c3εheεh = 0. (5)

The following proposition, which can be proved directly
by Schur’s lemma [2], gives an equivalent version of in-
equality (2) which can be readily computed with Matlab’s
LMI control toolbox [10].

Proposition 3.1. The matrix inequality (2) is equivalent
to the following inequality:

Λi =




Λ11 Λ12 Λ13 0 0 Λ16

? Λ22 Λ23 Λ24 0 0
? ? Λ33 0 Λ35 0
? ? ? Λ44 0 0
? ? ? ? Λ55 0
? ? ? ? ? Λ66




< 0, (6)

where

Λ11 = Hi + hPi + Qi(Ai + Gi) + (AT
i + GT

i )Qi

+ (ε1,i + hε3,i)Âi + BT
i QiBi

+ (ρi + ε5,i + ε7,i + ε−1
8,i ρ

2
i )B̂i,

Λ12 = Qi(Ãi −Gi) + BT
i QiB̃i,

Λ22 = −Hi + (ε2,i + hε4,i)
̂̃Ai + B̃i

T
QiB̃i

+ (ρi + ε6,i + ε8,i + ε9,i)
̂̃Bi,

Λ13 = h(AT
i + GT

i )QiGi,

Λ23 = h(ÃT
i −GT

i )QiGi,

Λ33 = −hPi,

Λ24 =
[
B̃i

T
Qi B̃i

T
Qi

]
,

Λ44 = diag {−ε7,iI,−ε9,iI} ,

Λ35 =
[
hGT

i Qi hGT
i Qi

]
,

Λ55 = diag {−ε3,ihI,−ε4,ihI} ,

Λ16 =
[
Qi Qi BT

i Qi BT
i Qi

]
,

Λ66 = diag {−ε1,iI,−ε2,iI,−ε5,iI,−ε6,iI} .

In the previously stated results, we used multiple Lya-
punov functionals to deal with switched systems. If a
single Q can be found to satisfy inequalities (2) and (3) ,
we have the following corollary of Theorem 3.1.

Corollary 3.1. Given h > 0, if there exists a positive
definite matrix Q such that the matrix inequalities (2)
and (3) are satisfied with Qi = Q, then, for any given
switching law, the uncertain switched stochastic system
(1) is robustly exponentially stable in mean square.

Remark 3.1. For the almost sure exponential stability,
according to [31] or [32], it can be shown that if the con-
ditions of Theorem 3.1 are satisfied, then system (1) is
almost surely robust exponentially stable as well. Since
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under the given conditions almost sure exponential sta-
bility can be easily derived from exponential stability in
mean square, we shall simply state a system is exponen-
tial stability in the following section.

Remark 3.2. To conclude this section, we point out
that, for briefness of this paper, we only focus on sys-
tem with linear uncertainties. However, stability results
for system with nonlinear uncertainties can be proved via
a similar approach.

4 Application

In this section, we present an example to illustrate our
main results. The following example shows that some-
times only multiple Lyapunov functionals would work for
the stability analysis.

Example 4.1. Consider the switched system given by

dx(t) =
[
(A1 + ∆A1)x(t) + (Ã1 + ∆Ã1)x(t− h)

]
dt

+ g1(t, x(t), x(t− h))dw(t), α(t) = 1, (7)
and

dx(t) =
[
(A2 + ∆A2)x(t) + (Ã2 + ∆Ã2)x(t− h)

]
dt

+ g2(t, x(t), x(t− h))dw(t), α(t) = 2, (8)

where

A1 =
[−1.9 −3.3

7.6 −11.3

]
, Ã1 =

[−4 8.9
1.8 −2.5

]
,

A2 =
[−5.4 3.9

0 −7.2

]
, Ã2 =

[
5 2.6

−2.2 −2.1

]
,

∆AT
1 ∆A1 ≤ Â1 = 0.01I, ∆ÃT

1 ∆Ã1 ≤ ̂̃A1 = 0.01I,

∆AT
2 ∆A2 ≤ Â2 = 0.01I, ∆ÃT

2 ∆Ã2 ≤ ̂̃A2 = 0.01I,

and

tr
[
gT
1 (t, x(t), x(t− h))g1(t, x(t), x(t− h))

]

≤ 0.1 ‖x(t)‖2 + 0.1 ‖x(t− h)‖2 ,

tr
[
gT
2 (t, x(t), x(t− h))g2(t, x(t), x(t− h))

]

≤ 0.1 ‖x(t)‖2 + 0.1 ‖x(t− h)‖2 .

It can be shown using Matlab’s LMI control toolbox
that there exists no single Q to suit the inequalities (2)
and (3). However, if we apply Theorem 3.1 instead of
Corollary 3.1, we can see that the switched system given
by systems (7) and (8) is robustly exponentially stable
for 0 ≤ h ≤ 4.4. For different average dwell time lower
bounds T0, the delay upper bounds h0 guaranteeing the
exponential stability of the system are listed in Table 1.

Table 1: Stability bounds of time-delay and average dwell
time (Example 4.1)

T0 (×103) 0 0.0856 0.2303 0.7960
h0 0 0.5 1.0 1.5

T0 (×103) 1.7645 3.0717 5.1803 9.2734
h0 2.0 2.5 3.0 3.5

T0 (×103) 23.4052 238.2837
h0 4.0 4.4
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